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Abstract

Learning reasoning techniques from previous knowledge lergely underde-
veloped area of automated reasoning. As large bodies ofaldtnowledge are
becoming available, state-of-the-art machine learninghods, particularly the
ones that are able to leverage semantics from the mathexnl#ti@ries, provide
a new avenue for problem-specific detection of relevant kedge contained in
the mathematical data. We present automated reasoning @gehapplication
area for machine learning and briefly describe promisingltesve have recently
obtained.

1 Automated Reasoning and Machine Learning

In the last fifteen years, the body of formally expressed eratitics has grown substantially. Inter-
active Theorem Provers (ITPs) like Coq, Isabelle, Mizad HOL [15] have been used for advanced
formal theory developments and verification of non-triite¢orems, like the Four Color Theorem
and Jordan Curve Theorem, and also for advanced verificafignftware and hardware models.
The large Mizar mathematical library (MML)ontains today nearly 1100 formal mathematical ar-
ticles, covering a substantial part of standard undergradonathematical knowledge. The library
has about 50000 theorems, proved with about 2.5 milliorslofenathematical proofs.

Such proofs often contain nontrivial mathematical ideasnetimes precised over decades and
centuries of development of mathematics and abstract fotiniraking. Having this kind of a
“knowledge base of abstract human thinking” in a completechine-processable and machine-
understandable way, presents very interesting oppoigstidr application and development of novel
artificial intelligence methods that make use of shantic knowledge in various ways. An exam-
ple is the MaLARea meta-system [14] combining deductiv@pfinding (automated theorem prov-
ing) with learning from new proofs in a closed feedback ldopgsting over time the performance
of both the deductive and inductive components. A concretemessing task is the selection of
relevant premises from the large formal knowledge basesnvame is presented with a new con-
jecture that needs to be proved. Providing good solutiohitogroblem is important both for the
mathematicians, and also for the existing tools for autechétieorem proving (ATP) that typically
cannot be successfully used directly with tens or hundrétt®asands of axioms. Experiments like
the MPTP Challengeeand the LTB (Large Theory Batch) division of the CASC comipen? that
smart premise selection can significantly boost the peidioica of existing ATP techniques in large
domains [14].

We aim to solve the followingpremise selection problem in large real-world mathematics: given
a large knowledge base of thousands of premises and proofs, and a new conjegtufiad the
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premisesP, that are most relevant for proving We have the following setting: Ldt be the set
of all first order formulas over a fixed countable alphabét= {z; | 1 <1i < n} C I be the set
of conjecturesP = {p; | 1 < j < m} C T be the set of premises, agdl: X x P — {0,1}
be the indicator function such that, ,. = 1if p; is used to prover; andy,, ,, = 0 if p; is not
used to prover;. For each premisg € P we can construct a datase}, = {(z,y.,p) | z € X'}.
Based orD,,, a suitable algorithm calearn a classifierC,(-) : I' — R which, given a formula:
as input, carpredict whether the premisg is relevant for provinge. Typically, classifiers give a
graded output. Having learned classifiers for all premjsebBe classifier predictionS),(z) can be
ranked: the premises that are predicted to be most relevtitiawe the highest outpu®, (x).

2 Results

We address described above problem by proposing semaaiit dgernel that is tailored for the
premise selection task [12]. Using an extension of the RLI§Grithm (also known as kernel ridge
regression [9], proximal svm [4], Is-svm [11]) we comparavith other kernels in [12]. Figure 2
shows the result of one of the experiments performed in tipepaNe evaluate the classification
performance of five kernel functions: geometric graph [Beér, latent semantic [2], Gaussian [10],
and semantic graph [3]. The semantic graph performs beitapared to other kernel functions, in
particular when the same fact is introduced with differgmitactic representations.

In [5] we introduce two kernel-based learning

algorithms and compare them with a state-of- . m ‘-Qd,,hh‘,‘,.m ‘
the-art automated reasoning tool. The average o, s

AUC of the proposed methods is up to 23% gﬁ;
higher than that of automated reasoning tool.  os [ [

Furthermore, we have recently compared sev-
eral kernel based classifiers, naive Bayes, and
state-of-the art automated reasoning heuristics
on a part of the MML library, the so called

MPTP2078 benchmark, which contains 2078 ‘ |
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problems from 33 Mizar articles [1]. On this
dataset, prediction obtained using naive Bayes o.Ml i
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algorithm leads to a 30,8% more problems Dataset
solved compared to the state-of-the-art auto-

mated reasoning method. Our kernel-bas&d@ure 1: Semantic graph kernel outperforms ge-
classifier leads to a 40,7% improvement. ometric graph [3], linear, latent semantic [2], and
Gaussian [10] kernels on 10 datasets.
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3 Significance and Impact

So far premise selection methods for automated reasonavigerinitial solutions over medium-size
problems [6], and heuristics like SINE [13] perform readagavell over large ontologies consisting
mainly of definitions, like SUMO [7] and Cyc [8]. However, temethods are still relatively weak
(15% success in proving the Mizar theorems, see [13]) in @ispn with human-based premise
selection when used on very large libraries with complidgteof structure and many complicated
theorems. Structured and complicated large mathemaiticalies provide an interesting challenge
and application field for development of machine learninghods that are aware of the libraries’
contents, semantics, and proof structure. The work desthibre is a first serious attempt to develop
kernel-based learning algorithms that aim to solve prese$ection problem by taking into account
structure and semantics of the theorems contained in the mathematical libraries.

4 Conclusion

Obtained results indicate that the performance of autairthorem proving for real-world mathe-
matics can be notably improved by using machine learnindpatistthat can leverage semantics and
structural information from the mathematical data. We halge incorporated proposed methods
into open source ATP system [5] which leads to notable benfgfitthe end users both in terms of
accuracy and efficiency.
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