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Abstract

Learning reasoning techniques from previous knowledge is alargely underde-
veloped area of automated reasoning. As large bodies of formal knowledge are
becoming available, state-of-the-art machine learning methods, particularly the
ones that are able to leverage semantics from the mathematical libraries, provide
a new avenue for problem-specific detection of relevant knowledge contained in
the mathematical data. We present automated reasoning as a novel application
area for machine learning and briefly describe promising results we have recently
obtained.

1 Automated Reasoning and Machine Learning

In the last fifteen years, the body of formally expressed mathematics has grown substantially. Inter-
active Theorem Provers (ITPs) like Coq, Isabelle, Mizar, and HOL [15] have been used for advanced
formal theory developments and verification of non-trivialtheorems, like the Four Color Theorem
and Jordan Curve Theorem, and also for advanced verificationof software and hardware models.
The large Mizar mathematical library (MML)1 contains today nearly 1100 formal mathematical ar-
ticles, covering a substantial part of standard undergraduate mathematical knowledge. The library
has about 50000 theorems, proved with about 2.5 million lines of mathematical proofs.

Such proofs often contain nontrivial mathematical ideas, sometimes precised over decades and
centuries of development of mathematics and abstract formal thinking. Having this kind of a
“knowledge base of abstract human thinking” in a completelymachine-processable and machine-
understandable way, presents very interesting opportunities for application and development of novel
artificial intelligence methods that make use of thesemantic knowledge in various ways. An exam-
ple is the MaLARea meta-system [14] combining deductive proof finding (automated theorem prov-
ing) with learning from new proofs in a closed feedback loop,boosting over time the performance
of both the deductive and inductive components. A concrete and pressing task is the selection of
relevant premises from the large formal knowledge bases, when one is presented with a new con-
jecture that needs to be proved. Providing good solution to this problem is important both for the
mathematicians, and also for the existing tools for automated theorem proving (ATP) that typically
cannot be successfully used directly with tens or hundreds of thousands of axioms. Experiments like
the MPTP Challenge2 and the LTB (Large Theory Batch) division of the CASC competition3 that
smart premise selection can significantly boost the performance of existing ATP techniques in large
domains [14].

We aim to solve the followingpremise selection problem in large real-world mathematics: given
a large knowledge baseP of thousands of premises and proofs, and a new conjecturex, find the

1http://www.mizar.org
2http://www.tptp.org/MPTPChallenge
3http://www.tptp.org/CASC
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premisesPx that are most relevant for provingx. We have the following setting: LetΓ be the set
of all first order formulas over a fixed countable alphabet,X = {xi | 1 ≤ i ≤ n} ⊂ Γ be the set
of conjectures,P = {pj | 1 ≤ j ≤ m} ⊂ Γ be the set of premises, andY : X × P → {0, 1}
be the indicator function such thatyxi,pj

= 1 if pj is used to provexi andyxi,pj
= 0 if pj is not

used to provexi. For each premisep ∈ P we can construct a datasetDp = {(x, yx,p) | x ∈ X}.
Based onDp, a suitable algorithm canlearn a classifierCp(·) : Γ → R which, given a formulax
as input, canpredict whether the premisep is relevant for provingx. Typically, classifiers give a
graded output. Having learned classifiers for all premisesp, the classifier predictionsCp(x) can be
ranked: the premises that are predicted to be most relevant will have the highest outputCp(x).

2 Results

We address described above problem by proposing semantic graph kernel that is tailored for the
premise selection task [12]. Using an extension of the RLSC algorithm (also known as kernel ridge
regression [9], proximal svm [4], ls-svm [11]) we compare itwith other kernels in [12]. Figure 2
shows the result of one of the experiments performed in the paper. We evaluate the classification
performance of five kernel functions: geometric graph [3], linear, latent semantic [2], Gaussian [10],
and semantic graph [3]. The semantic graph performs better compared to other kernel functions, in
particular when the same fact is introduced with different syntactic representations.
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Figure 1: Semantic graph kernel outperforms ge-
ometric graph [3], linear, latent semantic [2], and
Gaussian [10] kernels on 10 datasets.

In [5] we introduce two kernel-based learning
algorithms and compare them with a state-of-
the-art automated reasoning tool. The average
AUC of the proposed methods is up to 23%
higher than that of automated reasoning tool.
Furthermore, we have recently compared sev-
eral kernel based classifiers, naive Bayes, and
state-of-the art automated reasoning heuristics
on a part of the MML library, the so called
MPTP2078 benchmark, which contains 2078
problems from 33 Mizar articles [1]. On this
dataset, prediction obtained using naive Bayes
algorithm leads to a 30,8% more problems
solved compared to the state-of-the-art auto-
mated reasoning method. Our kernel-based
classifier leads to a 40,7% improvement.

3 Significance and Impact

So far premise selection methods for automated reasoning provide initial solutions over medium-size
problems [6], and heuristics like SiNE [13] perform reasonably well over large ontologies consisting
mainly of definitions, like SUMO [7] and Cyc [8]. However, these methods are still relatively weak
(15% success in proving the Mizar theorems, see [13]) in comparison with human-based premise
selection when used on very large libraries with complicated proof structure and many complicated
theorems. Structured and complicated large mathematical libraries provide an interesting challenge
and application field for development of machine learning methods that are aware of the libraries’
contents, semantics, and proof structure. The work described here is a first serious attempt to develop
kernel-based learning algorithms that aim to solve premiseselection problem by taking into account
structure and semantics of the theorems contained in the mathematical libraries.

4 Conclusion

Obtained results indicate that the performance of automated theorem proving for real-world mathe-
matics can be notably improved by using machine learning methods that can leverage semantics and
structural information from the mathematical data. We havealso incorporated proposed methods
into open source ATP system [5] which leads to notable benefits for the end users both in terms of
accuracy and efficiency.
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[10] Bernhard Scḧolkopf and Alexander J. Smola.Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

[11] Johan A K Suykens, Tony Van Gestel, Jos De Brabanter, Bart De Moor, and Joos Vandewalle.
Least Squares Support Vector Machines. World Scientific Publishing, Singapore, 2002.

[12] Evgeni Tsivtsivadze, Josef Urban, Herman Geuvers, andTom Heskes. Semantic graph kernels
for automated reasoning. InSDM, pages 795–803, 2011.

[13] Josef Urban, Krystof Hoder, and Andrei Voronkov. Evaluation of automated theorem proving
on the mizar mathematical library. InICMS, pages 155–166, 2010.

[14] Josef Urban, Geoff Sutcliffe, Petr Pudlák, and Jiŕı Vyskocil. MaLARea SG1- Machine Learner
for Automated Reasoning with Semantic Guidance. InIJCAR, pages 441–456. Springer, 2008.

[15] Freek Wiedijk, editor.The Seventeen Provers of the World, Foreword by Dana S. Scott, volume
3600. Springer, 2006.

3


